2

NASA TECHNICAL- TRANSLATION NASA TT F-114,387

GAS-DYNAMIC BANK CONTROL OF A SPACECRAFT
IN THE ATMOSPHERE '

R. V. Studnev

Translation of: "Gazodinamicheskoye
upravleniye dvizheniyem kosmicheskogo
apparata po krenu v atmosfere'", Uprav-
leniye kosmicheskimi apparatami i
korablyami (Control of Spacecraft and
Space Vehicles), Edited by B.N. Petrov
and I.S. Ukolov, Moscow, "Nauka" Press,
1971, Transactions of the Second In-'
ternational Symposium of IFAC for
Automatic Control in the Peaceful Use
of Outer Space, Vienna, Austria, Sept-~
ember, 1967, pp. L482-496.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
WASHINGTON, D. C. 20546 AUGUST 1972



GAS-DYNAMIC .BANK CONTROL OF- A SPACECRAFT
IN THE ATMOSPHERE

R. V. Studnev (USSR)

ABSTRACT. The Pontryagin max-—
imum principle is used to solve the
problem of optimal spacecraft attitude
control in the atmosphere. The infi~
luence of aerodynamic forces on the
spacecraft stability is considered.

At the present time one of the most timely problems is that VALY
of how to control a spacecraft, possessing aerodynamic quality,

during its atmosphere entry. Numerous papers discuss the atmos-

i

(phieric re-entry by a'spacécraft;which*is,bélanCed'ihfthéfsensé_v

that its angle of attack is constant, and whose trajectory is
controlled by changing the bank angle [1, 2]. In this connec-
tion a problem arises of estima%ing the dynamic¢ possibilities
of the motion of a spacecraft relative to its center of mass
when compensating for perturbations of the angle of attack and
slippage (a, B), and controlling the bank angle. There are many
articles devoted to an analysistof the optimal control of a
spacecraft's attitude in a vacuum [3 - 6]. A majority of these
problems are solved using the Pontryagin maximum principle

[7, 8]. Below the maximum principle is used to solve a simpli-
fied and analogous problem of the optimal spacecraft attitude
control in the atmosphere. Thé problem is a little more com-
plicated than the problem of mdtion in a vacuum, since it is
necessary to consider the influence of the aerodynamic forces
on the stability of the craft.

¥*Numbers in the margin indicaté pagination in the original
foreign text.



1. Equations of Motion of a Spacecraft Relative to

its Center of Mass During Atmosphere Entry

The motion of a spacecraftfrelative'to-its-center of mass
will be considered approximatel& by neglecting the interaction
of the motion of the center of mass. It will also be assumed
that, during the time it takes for the bank turns and compensa-
tions of deviations in a and B to be completed, the parameters
of motion of the craft (V, g) change very little and the equa-
tions of motion may be considered to have "frozen" coefficients.
Finally, the motion of the craft relative to its center of mass
will be assumed to be so slow that it will be possible to neglecﬁ

in the equations of motion the nonlinear terms such as

Under these assumptions, the equations written relative to
the principal central axes of inertia (0X1Y1Z7) (Figure 1) will

have the form

(;)z=ﬂ_[(-:a+uz, a‘,—f-—(j)z, ( )
A . 1.1
oy, = MB +u,, B = C0s 0ty - @0y - Sin oty g,

Oy, = M;B + Uy, 'i"= COS 0ty Wy — SIN OG-y, (1.2)

where og is the balancing angle:of attack of the spacecraft,

ag = const); u u

<2 u_ are the moments from the control surfaces

y’ 'z ,
divided by the corresponding moments of inertia.

In Equations (1.1) and (1.2) only the moments of the aero-
dynamic stability of the craft have been retained, since at
hypersonic speeds the effect of%the aerodynamic damping may be
neglected. Equations (1.1) and.(1.2) imply that the equations
of the three-dimensional motionéof a spacecraft can be separated
into the equations of longitudihal and lateral motion, (1.1)
and (1.2), each of which may be?studied separately.
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Figure 1. o Figure 2

Let us consider the equatibns of the lateral motion of a
spacecraft (1.2). Let us transform these equations in such a
way that the banking motion (rotation about the velocity vector
V) and the yawing motion (variation of the angle B) of the craft
will be separated. Let us'multiply the first and second equa-
tions in (1.2) by cos ag and sin ag, respectively, and add them
together. This will produce an;equation in éw. When they are
multiplied by sin oag and cos agp, respectively, and added to-
gether, we obtain an equation iﬁ QE:

‘ Qq, = Gf,B + uy, B= an
Q‘( 0‘(B+u'ﬁ . Tfo (103)

il

In Equations (1.3) we use the foldowing notation: -
R S
Qg = €0S tg- 0, + Sin oty Wy, - (1.4)
Qy = cOS &y Oy — SN Cy+ Oy,
Ga = M cos oy - MEsin x,
(1.5)

v TR
G, = MEcosa, — M7 sin a;

Ly = Uy, COS Ly — U, SIN &y
A : (1.6)

Uy == Uy COS oy + Uy Sin o,

|
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‘Equations (1.3) imply that the motion of a spacecraft along the’
angle B does not depend on the angle y and the control Uy -

Let us consider a<choice~o€-the surfaces -controlling ux, uy,
such that Uy and Uy will be independent. This can be accomplished
either by a coordinated deflectlon of the aerodynamic surfaces
(uX, uy), or by a special orlentatlon of the control jet engines

in the case of gas-dynamic control of the spacecraft.

Let us explain why it is necessary for the spacecraft to
position the control jet -engines in such a way that one pair will
produce the moment Uy alone, and the second pair — the moment

uw alone.

A control jet engine of thrust P; whose vector lies in the
plane parallel to the plane OYlil, placed at the tail of the
craft at the angle ¢; to the OZi axis, produces reduced moments--.
relative to the 0X; and 0Y; axes that are given by the formulas

(Figure 2) S i R o
“VU — 2P1 smqul . - 2P1 €05 Qily, :
| = ' fu (1.7)

where 74, Zy are the distances of one control jet engine to the
0X; and 0Yy axes, respectively;;IX, Iy are the principal moments
of inertia of the spacecraft relative to the 0X; and 0Yq axes.

Let the angle at which theicontrol jet engine is placed,
¢1, be found from the conditionithat uy = 0 for Py # 0. Sub-
stituting the expressions in (137) in Equations (1.6), and
equating the first relation in g1.6) to zero, we obtain the

following conditionﬁfgﬂ¢l

A i
@1=zwmg<&i;kgqﬂ. ' (1.8)

/484



With such a choice of ¢, the control of uy is given by the
formula }
V 2mm

'y = .
," €08 do ]/1+ ﬁ‘i:igao e S (1.9)

In the particular case whethJ@Ig;:ﬂ
wialtaly =2

the expression for Uy simplifieé

2P,

Uy = T

Similarly, from the condition

ug = 0,, we find the orientation of

the second pailr of control jet

engines (Figure 2)

LT 1)‘ : Figure 3

Py = _a"c‘g(lxlytgao . gl.l“l);

Equations (1.8) and (1.11) imply that in general the control -jet-
engines'ané not oriented orthogonally to each other, but instead
make an angle % — 92| whose tangént is given by

L (o 5{;' 2 [hle, A 1 ;
g((Pf"‘(Pz —Sillzlo[l [U1_(lylx)2:|. (1-12)

Iely

i

If Lhﬂ I”;Qﬂ, fhen the control jet engines producing the moments
uy and u, are orthogonal [(¢; — ¢,) = 90°]] Figure 3 is an example
of the plot of (¢ — @) versus 1,11, for @, = 30°.]

] .
Similar transformations ca@ be performed when analyzing
the aerodynamic control. It isfeasy to show that for yaw con-

trol Uy, the moments uy and u mist be related by

L)
x[uJ ‘go‘m\

)

(1.13}1

o] = 2]

where
l I/ICOSQO.

(1.14)



For bank control, uy and u must be related by (/485

y
(1.15)

|y = — 1]tg ap,
R
where I

1
cosag

(1.16)

[ | = 2 [0

For convenience in analysi? and to obtain more general
results, we shall transform the equations to a dimensionless

form. We introduce the dimensionless time T
=V =3B cadt.1 (1.17)

Let us change the scales of the:independent variables by taking

into account the restriction on the control of uw and u

Y
lu| <|Usls  |ua|<| Usl, (1.18)
introducing for this purpose the following notation
P = 9 VB
= - Q —-_‘—__‘b
B B|U¢1" . MY/
o GY]uQ), ! QY.V:—CE%
‘%_—(—GMIUY[’ : QY_"|UY[ ’ (1.19)
T(‘GB) -

Considering the notation in (1.19), the equations of motion will

become
—Q;’:_—;}T&‘by B
=0 |G (1.20)
O, =oif + ay,
¥ =0, <. gl.zl)

We shall now proceed to aﬂalyze the optimal control of a

spacecraft using Equations (1.50) and (1.21).
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2. An Investigation of the Form of p-Trajectories

In accordance with the Pontryagin maximum principle [7, 8],

we write a function
== P@ + Priy — paQy + pa_c-}B + paily +,P“§ffl (2.1)
Let us separate the terms in H ?hat contain controls
H, = plﬁ;b + psﬁ.,-_{—. J g (2.2)

From the condition that H be maximized relative to Uso it follows

that the controls Gwﬁand u., are in the form of relay functions

Y
that can be found from the condition

iy =..signp1_, i =si.gnp3, l ([ﬁ”: |ﬁY]= 1).]. . (2‘3)
In order to find the optimal control, 1t 1s necessary to
find the solution of a system of conjugate equations p{=%-—i”U0Xp4

1

Let us construct a system of conjugate equations and con- /U86

sider the possible forms of solutions to this system. The con-

jugate equations have the form

Pi=—DPu D= P DSy (2.4)

Py= —Pu rp;=_0\ B (2.5)
The equations in p3' and py' can be easily integrated to

Ps = — &,T 4 ¢y, p{=c;.,’ (2.6)

[}
The Solution (2.6) for P3 (1) a?d the Condition (2.3) imply that

in general the control of u, may change the sign no more than

Y
once.



Figure U4 : Figure 5

The conjugate variables pj, ..., py can be determined by
~taking into account the boundary conditions imposed on the real
variables. Since the conjugate equations are linear and the
control functions have a relay form, the conjugate variables

can be determined up to an arbitrary constant factor. In this
connection, (2.4) implies that the form of the solutions for pj
and pp does not depend on the coefficient 0*, since a change of
that coefficient is equivalent to a change of scale of the vari-
able p3- Only the solution for:the real variables depends on

the coefficient oi.

Let us consider in more detail the solutions for the con-
Jjugate variables p;, Ds- Considering the form of the solution

for pz (1), We use a transformaéion of variables
3 i

PiL= Dy~ €0, + €8T,  Dy= Py — €03, (2.7)

to-obtain the ‘equations for pjy and phH, which cah be easily}-

integrated



_E;f—:—gzy' ;;=51] (2'8)
A solution of this system of quations in the phase plane pips

represents a family of concentric circles (Figure 4a).

In the analysis of the optimal control, it is necessary
that only the function p; (1) Véry‘with time (the values of the
function p, are unimportant). ﬁquations (2.7) and (2.8) imply
that a change of the variables Py and pp in the phase plane may
be represented as a composition .of two motions: the motion of
the figurative point along a circle and a translation of the
circle (Figure 4b).
trated in Figure 5. Let us note certain properties of our solu-
tions for the conjugate Variablés (p1, p2). It can be Shown
that the phase curves are symmetric about the axis pj; = const
passing through points at whichfapJ&hzng

To prove this, let us consider the projections of the velo-
city of the figurative point onto the vertical (Opl) and hori-

zontal (Opp) axes. These projeétions are equal (Figure 6):

2a

Vp‘=—,Rcos(p+1—,, V,,2=1{sin(p,‘ (2.9)

where R is the radius of the circle
of the p-trajectory; 2a/T is the
speed of translation of the center
of the circle.' '
|
Making use of the expressidns

for the velocity components Vpléand

Vp2, we obtain the derivative;@%ﬁ@a: }j ,
R ‘
S, —Rcosga-28 f R
om_ Ve T T (2.10)
2 Vo Rsin @ : !

: Figure 6

The possible forms of such curves are illus-

~
~
o
-3



Equation (2.10) implies thét the derivatives‘mn@@4 for
equal (but different in sign) values of ¢ have equal values that
are different in sign. In particular, the derivativef ®%KW4

vanishes if ¢ is given by

24

L2
q>=imoc0.s7,—n, (2.11)

and tends to infinity for ¢ = O,and ¢ = 180°. This type of varia-
tion of the derivatives indicates that the phase curve has an

axis of symmetry corresponding to the angle ¢ = 0.

The time spent by the figufative point in commuting between
the points of tangency of the phase curve with the generator
po = const is equal to the period of the point going around the
circle (i.e., 2m), and the distance between the points of tan-

gency is identical for both geneérators (Figure 5b).

In a region where the direction of motion around the circie
and the displacements of the center of the circle are in oppo-
site directions, the phase curve pl(p2) ma& have loops. However;
in the case when the speed of translation of the center of the
circle is greater than the speed of the figurative point in its
movement around the circle, any loops in the phase trajectory
disappear. '

Let us estimate the time needed for the figurative point /488
to go around a loop (see Figure 6). This can be found from.
the condition that the time Tl,éduring which the figurative
point moves along an arc of thegcircle, be equal to the time T»
of the translation motion of a boint symmetrically located on

the circle.

10



We have

]{sinq)nT" l (2.12)
a

Ty = 2¢,, Tp ==

The condition 17 = 7, ylelds an expression for the radius

of the circle R = R/a in terms bf'¢o and T

!

— . 200 1 (2.13)
“—Tm;-!

3. An Analysis of the Time-Optimal Bank Control

of a Spacecfaft

We proéeed now to analyze the optimal bank control of a
spacecraft. The motion of the craft relative to its center of
mass will be considered in the phase planeszﬁﬁ}fand.f§ﬁﬂ. The
equations of motion (1.20) imply that, for a proper choice of
the control organs, the yawingimotion of a spacecraft does nét
depend on its banking motion, and may be analyzed separately.

Let us consider the yawing motion of the craft

Oy= =B iy B =0, (3.1)

For ﬁwé;olthe motion of the craft in the phase plane PQ,| can be
represented by a circle with the center at 0. The radius of

the circle depends on the initial conditions @(@}and §L(®i,
gg;J/gmyq_ﬁg«ﬁlThe figurative po?nt goes clockwise around the
circle, making a full revolution during 7. =2x] The motion of
the spacecraft in the case of the relay control 4, = 41 can be
represented in the phase plane by circles with centers moved

along the ﬂf{axis by + and — 1,! respectively (Figure 7a).

11
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Figure 7

The banking (y) motion of the craft in general, whenic;#=Q

depends on its yawing motion and on the control EY
=B+ i, ¥ =0, (3.2)

In the case when ?@s(f]the banking motion of the spacecraft
in the phase plane is described by a parabola for‘ﬁv#=0(or.a
straight line @, = const| for & = 0| (Figure 7b).

Let us consider the problem of the time optimization of
spacecraft control, assuming that all variables are initially

set to zero

[

and such that the craft will be rotated by an angle }n]during
a minimum time. T and will be brought at the end :of the turn

back to zero conditions .

BD=0D) = (1) =0, 1(1) = 7| (3.1)

Such a system of boundary conditions must be satisfied by analyz::

ing a simulfgﬁéaus solution of the equations of motion (3.1)

and (3 2) for a relay control of uw and u,, which cdn be deter-

Y
mined taking into account the solutlons of the system of conju-

gate equations (2.4) and_(2.5).

12



The optimization condition implies that theAcdnffdl'éf'ﬁa'

" is linear and determined by the ivariation of the sign of the
conjugate function P; (7). Figyre 5 implies that the function
py (1) may either~have-tw0*segménts with different signs (Fig-
ure 5¢) (two-pulse control), or four segments with different
signs (four-pulse control) (Figﬁre 5a, b). Three segments witﬁj

. different signs are also possibie.

Let us consider a symmetrié bank and yaw control of a space-
craft. An analysis of the actual motion of a spacecraft rela-
. tive to the anglg)B implies that, in order for the boundary
conditions (3.3) and (3.4) to be satisfied when T is not a

multiple of 2m, it is necessary .that more than two pulses be'

applied.
Figure 8 shows ﬁ

an example of the E g _
motion of a space- ? _fﬁ$=‘,::g r.
craft in the phase i ml e T
plane By, that f o ,// I
satisfies the bound- | - |

s ” 0 el g
ary conditions of ? FT‘,\/ .
the problem. It ! b7 ' t
will be shown that ; ' . I O A . ‘
it is possible to ! - : : ‘ L
construct a solu- Figure 8

tion for the conju- ! :

gate variables py (T) and p3 (Ti, and consequently the control
is indeed optimal. !

The solution for the conjugate variable P3 (1) is a linear

function of time. Here we can %ssume that‘pAO)ééﬂdW{ then

13
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ps (1) = — =, mm=4_ﬁf (3.5)

The function psy (T) changes sign at ,;:ézvzjaga the control u, /490

changes its sign-at-the-same time - (Figure 8b).-

By specifying the function:p3 (1), we determine the location
. i
of the center of the circle pj (pp), in particular p; = — 1
for 1 = 0, and p; = + 1 for 1 =,T.

An analysis of ‘ ~ _ ' o
. T=7 g

the actual motion

of a spacecraft also |2y

gives us times at
. lf?"/ Uyl
which the second

pulses (Figﬁre 8e) ; ]
are applied. These

4/71 I—
|
AL
~1/\
./
“r

pulses correspond to

a change of the

variable py (1) J 70 - ]
along the loop bed - ) Figﬁré—9A.. -
(Figure 8a). Making
use of Equation (2.13)
and the known time W/2-= ¢;| we f£ind the radius of the circle R in
order to solve the conjugate equations. By adding to the angle
¢O, which is proportional to thé duration of the second and
third pulses, the angle b1, which is proportional to the duration
of the first and fourth pulses,{we obtain the initial position
of the figurative point on the %ircle Py (p2). \
g

Using the results obtained{in Section 2, it is easy to show
that a change in P (1) agrees &ith the required change of the
control ﬁﬁ, and consequently, t%e optimal control, satisfying
the boundary conditions (3.3) and (3.4), has been found.

14
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L

As the angle of

~ ; . [ T Jip

turn, yg, lncreases, & } g
Y

so does the duration 4 ¢ L/

l
process T, and so do | S ﬂ} ::::,,
the durations of the jp\\_//&\~,/q :

second and third

of the transition !

&
< L h ’
) 9
A
“ -

\Rn

pulse. For a certain

<
[

value of the duration foA

of the transition Fiéure 11

process T, the dura-

tions of the second and third pulse are maximum, and begin to
decrease as T continues to increase (Figures 9 and 10). For

70, corresponding to B(niﬂ'(where n is an integer), the control
is an extremum and is accomplished with two pulses (Figure 11).
When yg continues to increase (ﬁncrease of T), the control is

again accomplished with four puises (Figure 12).
An analysis of the three-pulse control (Figure 13), satis-

fying the boundary conditions (3.3) and (3.4), shows .that. —

even though this control is fédéﬁble — it is not time-optimal.

15
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This is due to the fact that, in addition to an additional in- {
crease of yo due to B, also the banklng angular velocity 1is de-
veloped, whose compensation results in a loss of the gain obtalned
and deprives the motion of 1its thlmallty In all the above

cases (Figures 8 - 12), the motion of the spacecraft along the

angle B is symmetric, i.e.,

Ti2 )
SBdr:— fdr. (3.6)

As a result, the additionai banking angular velocity within
the time interval [0, T/2], due to the slippage, is compensated
within the time interval (T/2, T) by a further increase in B.
Due to this fact, the time intervals during which the positive

and negative control ﬁm is exerﬁed are identical.

In order to find a relationship between yg and the minimum
duration of the transition procéss T, let us transform Equations

(3.2). Let us represent &

¥ and%? as sums of two terms

Q=00+ R v =1+ 1] . (3.7)

16
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‘and let the variables h,%, é, andkﬁh\be found from the equations

. (3.8)
Q(:—'—_G;Bi’}_ﬁ:ﬁn, (3-9)
QY: =IZ-Y, ,};; = §Yg'
Equations (3.8) imply that i
(3.10)

' ) 5
Equations (3.9) may be solved separately, without considering

Equations (3.8). Thus the solufion for ﬁﬂ?ﬂ can be written in

the form

2

o L
IO(T)——Z i 3‘ . -
)+ j B(r, T)dfdf?—+|2-/ (3.11)

»The Relation (3.11) permits us to find the dependence of5§0 on‘thg]

1

duration of the transition process T.

The function @(n13L appearing in the relation, depends on

the time T since the control ﬁw also depends strongly on 1it.

Using Equation (3.11), we can easily find the final value

of the bank angle Yy that corresponds to the two-pulse control
i
(Figure 11) :
o= 472 (2 4 a3,
Rl (3.12)
i
In general, if the time T is a hultiple of 4w, then the expres-

'31on for Yn can be written in the form

 —'()’1)2‘12(2+5¥) (3.13)

17 -



where n is the number of periods of the natural b$ciliationé in
8 within one half of the time interval during which the transi-

tion process takes place.

In spite of the simplicity:of the equations of motion,
finding VO(T) is a very difficult operation. Let us write down
certain necessary relations. A% analysis of the geometry of
motion in the phase plane (Figure 14) gives the following

expressions for the basic parameters:

‘ff=]/5—/1005(9lv (3.14)
fin@r T

| | T T2 VT s @

) §y = arclg 2sing L o————'

‘ f‘i:?aﬁlvl——w§¢l (3.15)

¢
where ¢l is the angle which 1is broportional to the duration of
the first (fourth) pulse; ¢ is the angle which is proportional
to the duration of the second (third) pulse.

Figure 15 gives the plot of f— g;* —
— ’ . . A
meJL and Figure 16 the plot of: ig R
—_— . ' | :
7./204" versus| *¢1. Using these i W -
SR e e _ : rald
plots we can find Td{” for each ff 72 Yo! ' _
value of ar. { C EXl\‘—////ﬁ

v 1%
Let us estimate the gain ih i'_ =
. A - . ’ r

time (At), due to the simultaneous Pigure 14

pank and yaw control as compared

with the optimal control of tEiL_

bank angle alone. The time (TOjZGﬂ needed to turn a spacecraft
by an angle T + Te in the case Pf an optimal control of the

l

bank angle alone is given by

o rl:o—}—AT?
T+l‘2=2< P >1

1

(3.17)

:
¢

18
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where yj is the bank angle achieved as a result of bank control

during a time-optimal maneuver performed during a time Tg; vo

is the bank angle obtained duri?g a time optimal slippage maneu-
ver; Tg 1is the duration of the maneuver in the case .of the time-

.
t

optimal bank and yaw control.

From (3.17), we obtain a nonlinear dependence of the time

gain on Ty and vyo

A= —T,+ Vi1 oy, (3.18)

4., Time-Optimal Compensation of the Initial Yaw and

Angle-of-Attack Deflections of a Spacecraft

Let us consider the problem of the time optimization of the
compensation for the yaw deviation of a spacecraft. Asgﬂefore,

we shall analyze the equations éf motion

[ S (4.1)

e = =, = (4.2)
Qy=08+uy, 7' =

with the boundary conditions

19



2,(0) =0,
o(1)=B(T

slaye

ST (4.3)

The equations of motiond(u.l),aﬁd (4.2) imply that the motion
along the angle B may be discuséed separately from the motion
along the angle y. Thus, the pfoblem of compensating.for the
initial deflection in the angle!B can be subdivided into the
problem of the optimal yaw contfol of the craft and the problem

of compensating for the accumulated bank error.-

The solution of the first problem is knownj; it is considered
in a number of papers. Moreovebl, its solution has been carried
to a stage involving a synthesis of a system realizing the opti-

mal control algorithm [7].

However, the complete probiem of the optimal control of B

and 7 has not yet apparently been studiled.

It should also be noted that the problem of the time—optimai
compensation of a deviation in o coincides with the problem of
compensating a deviation in B [see Equations (1.1) and (1.2)],

and its solution, as noted above, is known.

It is easy to show that the problem of the optimal compen-
sation of deviations in B and y does not have a unique solution.
This is due to the fact that the optimal control of B does not
depend on the motion of the spacecraft along the angle ? and
has its "characteristic" time of the duration of the transition
process. At -the same time, a control of vy depends on the yawing!
motion of the spacecraft. In tye case when the bank control
is of little effectiveness and the transition process 1in vy is
slower than-the one in B, the control is unique. - In the-case --

when the effectiveness of UY isi high, deviations 1n the angle ?

20



may be compensated for in many different ways provided that the -
process stops at a time determined by the motion along 8. Exam-

ples of those types of motion age i1llustrated in Fiéﬁgg}l?.

i

Let us consider in somewhaé greater detail the case when the

solutlon of the problem is unlque — namely, when the control of
Yy is of llttle effectiveness and the process of compensating for
perturbations in y due to the hawing motion of the spacecraft
takes a longer time than the process of compensating for the

motion along 8.

Similarly to Equation (3.7), let us represent a change in y
as consisting of two components: "forced", (71), caused by a

perturbation in B, and "compensating", (72), due to the bank

control
"=—2 1 _2 0[
=" o (h.1)
72=QY;’ Q -——'uyo
T B (4.5)
The solution for y has the form.
(4.6)

']—’ = 5'1 + :fr

Since in this case the transition process involving B ends
earlier than the process involving ?(T5<:Tﬁb the solution of
Equations (4.4) can be used as the initial conditions for Equa-

tions (4.5), and be written in the form

SR - ,
‘,];2(0)=67(j‘5 gdrdr_Tﬁjpd-c)_a (Iz—Tpll) (4.7)
‘ Ty . . .

72 (0) = o1 [ Bdv = a1, ; (4.8)
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In Equation (4.7) the integral I accounts for the varia-
tion of y within the time interval (0, TB), due to the initial
conditions on y,' (0) (4.8). Thus, the problem has been reduced
to the well-known problem of an:independent bank control of the
motion of a spacecraft. An example of a phase trajectory is

given in Figure 18a, which gives the plots of V2V(T) and y1 (1).

As we know, the time-optimal bank control is achieved by
means of two pulses (Figure 18b) whose duration differs by;Kﬂ.
The latter can be determined from the condition that the initial

angular velocity yp' (0) be compensated for:

287 = 7, (0), Av = 2, (4.9)

The total duration of the bank transition pr'ocess"‘I‘Y is
found from the condition that the total bank deviation, due

to a motion in B, be compensated for:
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=3 {[12+<f —-mm( (4.10)

TY can be found from | ;

AN

ro=2av+ V26T 47 (§.11)
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